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ABSTRACT

In support of its dual mission in environmental studies and nuclear nonproliferation, the Multispectral Thermal
Imager (MTI) has enhanced spatial and radiometric resolutions and state–of–the–art calibration capabilities. These
instrumental developments put a new burden on retrieval algorithm developers to pass this accuracy on to the inferred
geophysical parameters. In particular, current atmospheric correction schemes assume the intervening atmosphere
is adequately modeled as a plane–parallel horizontally–homogeneous medium. A single dense-enough cloud in view
of the ground target can easily offset reality from the calculations, hence the need for a reliable cloud–masking
algorithm. Pixel–scale cloud detection relies on the simple facts that clouds are generally whiter, brighter, and
colder than the ground below; spatially, dense clouds are generally large, by some standard. This is a good basis
for searching multispectral datacubes for cloud signatures. However, the resulting cloud mask can be very sensitive
to the choice of thresholds in whiteness, brightness, and temperature as well as spatial resolution. In view of the
nature of MTI’s mission, a false positive is preferable to a miss and this helps the threshold setting. We have used
the outcome of a genetic algorithm trained on several (MODIS Airborne Simulator–based) simulated MTI images to
refine an operational cloud–mask. Its performance will be compared to EOS/Terra cloud mask algorithms.
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1. INTRODUCTION

The dual primary missions of the Multispectral Thermal Imager (MTI) spacecraft are environmental studies and
nuclear non-proliferation. In order to study the images from the spacecraft, atmospheric effects such as water vapor
absorption or aerosol scattering must be removed. Also, clouds, which limit seeing of the ground, routinely must
be removed from the images. For the MTI spacecraft, efforts have been made to limit analyst requirements. Most
software is automated to some degree.

Thus, using the simple definition that clouds are white, bright, and cold, analysts are required to determine three
thresholds explicitly for each image: an upper limit on temperature, a lower limit on whiteness, and a lower limit
on brightness (as determined by a classic NDVI scheme). While fundamentally there is a lot more science to clouds’
radiative properties, for the primary purpose of the MTI mission, clouds are a perturbation that must be flagged.
Therefore it is important to quickly sort data into “cloud” and “non–cloud” categories, rather than to classify the
types of clouds. The classification of clouds will be a focus for future work with the MTI data.

The MTI spacecraft1 was launched on March 12, 2000. A collaborative project between Los Alamos National
Laboratory, Sandia National Laboratory and Savannah River Technology Center, MTI’s mission objectives are to
advance the state of the art in multispectral and thermal imaging, image processing, and to better understand the
usefulness of these data. MTI has 15 multispectral bands (see Figure 1), including three visible bands, five very near
infrared, two short–wave infrared, two mid-wave infrared and three longwave infrared.2

The MODIS Airborne Simulator (MAS)3 is a high resolution scanning spectrometer that is carried on-board a
NASA ER–2 high–altitude aircraft. Its primary objective was to help create and assess algorithms for the MODerate
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Figure 1. MTI bands shown above a model atmospheric transmission profile from Clodius, et al.2. Bands C, E,
and N are used for the MTI simple–threshold cloud mask (see Section 2.1).
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resolution Imaging Spectroradiometer (MODIS) on board the TERRA spacecraft. In this work, spectrally resampled
MAS data is used as a proxy for the MTI spacecraft data. The data is from the Smoke, Clouds, And Radiation -
Brazil (SCAR-B) campaign to study tropospheric aerosol radiative forcing.

The MODIS cloud mask was developed for use on MAS data. Ackerman et al.4 describe this physics-based
algorithm. Their method involves categorizing the scene into night, day and type of land-cover (e.g. desert), then
they classify the types of clouds based on thresholds and adjacency requirements for the specific type of cloud being
assessed.

GENIE (see Brumby et al.,5 and references therein) is an evolutionary computation software system, using a
genetic algorithm to assemble image-processing tools (retrieval algorithms) from a collection of low-level image
operators (e.g., texture measures, spectral band math, edge detectors, various morphological filters). A population
of candidate tools is generated, ranked according to a fitness metric measuring their performance on some user-
provided training data, and fit members of the population permitted to reproduce. Each tool generates a number of
intermediate feature planes, which are then combined using a supervised classifier (currently a Fisher discriminant
and intelligent threshold function) to generate a final result mask. This process cycles until the population converges
to a solution; or the user decides to accept the current best solution, or to change the training data. GENIE is free
to ignore the spatial information in the image and rely wholly on spectral band math and the supervised classifier,
but in practice GENIE will construct integrated spatio-spectral algorithms. These have been shown to be effective
in looking for complex terrain features, such as golf courses.6

As with all machine learning systems, performance depends crucially on the provision of a sufficient quantity
of well-chosen training data and supplying this data is typically a major challenge. For GENIE, training data
is provided via a graphical user interface. The user is able to influence the evolution of algorithms by providing
additional information, and by interactively providing additional training data. While this method has been applied
to many different remote-sensing problems, we started this investigation to explore its usefulness for the important
task of cloud–finding.

2. ALGORITHMS

2.1. Image Dependent Simple–Threshold Method

For the MTI cloud masking algorithm, we use three basic descriptive criteria about clouds to determine the cloud
mask: brightness, whiteness, and temperature.7 In order for the mask to work well, we need data from at least a
visible, a near infrared band, and a thermal band. We use bands “C”, “E”, and “N”.

Observationally, clouds are usually much brighter than their background. They can be considered to be lamber-
tian. Their brightness is caused by refraction by the ice crystals and water droplets that make up the cloud. Clouds
usually appear white when viewed from above. Due to the altitude of the clouds, they are cold. Often, they appear
much colder than their background, when viewed from above - ranging from perhaps greater than 20◦C to -60◦C
depending on their opacity and altitude.

For MTI we developed a simple procedure. We use a normalized dense vegetation index (NDVI) to determine
whiteness, the red band to determine brightness, and the thermal band to determine a relative temperature, using
simple–thresholds on each of these. While these codes are mostly automated, this routine requires that the thresholds
be determined by hand – selecting representative cloudy pixels in an RGB display. In this RGB rendering, we assign
B to band “C” (red), G to band “E” (near IR), and R to “N” (thermal IR); dense-enough clouds appear in a
distinctive cyan blue. Figure 2 illustrates this simple algorithm. This routine is part of the Level 2 data processing
for regular data retrievals for MTI.

2.2. MODIS Method

Ackerman et al.,4 describe the cloud mask developed for the MODIS instrument on board the Terra Spacecraft.
Here we summarize their methods. Their automated masking routines specify pixels that are optically thick aerosol,
clouds or shadow. It returns a 48 bit cloud mask that includes much information, that includes a two bit classification
for the likelihood that a given pixel is cloudy. This cloud mask is based on radiance values in seventeen bands plus
ancillary data: spacecraft viewing geometry, land/water/ice map, topography, etc.

Here is a brief description of the mask implementation.4 The pixel is set to land, water, or coast from an
ancillary data set. Next its ecosystem is determined. Adjustments are made for whether it is in a sun glint region.
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Figure 2. Flow chart of the MTI simple thresholding algorithm. See Section 2.1 for details.
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It is assigned day or night status. A special adjustment is necessary if snow or ice is in the image. The appropriate
masking test based on all of the attributes that have now been assigned to the pixel is applied. This last step assigns
a value to the pixel, each pixel will then be either clear (with high confidence), probably clear, maybe clear and likely
cloudy with those designations defined via use of a threshold. Any pixel not labeled clear with high confidence will
be considered cloudy for our cloud mask comparison.

2.3. GENIE

The MODIS cloud mask was run on several scenes from the MAS SCAR-B flight series (95-162, 95-163). The 2-bit
cloud cover classification provided the training data for GENIE. We chose to use the most conservative cloud finding
setting, so any pixels classified as even possibly cloudy were marked as true for GENIE’s training data.

A population of 100 candidate tools, each consisting of 20 primitive image processing steps, was evolved for 100
generations. This evolution required a few hours compute time on a LINUX workstation. The evolved solution
produced a good match to the training data, and compared to the MODIS cloud mask we achieved a detection rate
of 95% and a false alarm rate of 6.1%, as shown in Table ??.

Each candidate tool generates five feature planes. We use the contents of these planes to derive the Fisher
discriminant, which is the linear combination of the feature planes that maximizes the mean separation in spectral
terms between those pixels marked up as “true” and those pixels marked up as “false”, normalized by the “total
variance” in the projection defined by the linear combination. See Bishop8 for details of this discriminant. The
output of the discriminant-finding phase is a gray-scale image. This is reduced to a binary image by using Brent’s
method9 to find the threshold value that minimizes the total number of misclassifications (false positives plus false
negatives) on the training data.

It is possible to analyze the evolved algorithm to determine if all the features contribute to the final answer. In
the present case, we found that only two features planes were significant, and we present a flow chart of the reduced
algorithm that generate just those feature planes in Figure 3.

The algorithm consists of two independent blocks:

(A) MAS band 2, 0.653µm visible red, spectrally equivalent to MODIS band 13 and MTI band “C”,
undergoes a linear contrast stretch, but is otherwise passed without alteration to the Fisher discriminant.
(B) MAS band 35, 4.465µm MWIR, equivalent to MODIS band 24 and similar to MTI band “J”,

undergoes local gradient spatial processing, equivalent to the difference of the standard morphological
filtering operations of greyscale dilate and erode. A scalar constant is subtracted from the output, and
the result is clipped at the 95% level. An NDVI-like ratio is formed of this processed result and the MAS
band 1, 0.659µm visible red.

To test generalization of the evolved algorithm, we ran our algorithm without modification on two other scenes
from the SCAR-B flight series, the results of which are also shown in Table ??. Generalization is quantitatively good,
and is in fact equal to performance on the training image because of the generally reduced complexity of types of
clouds present in other flight tracks in the SCAR-B sequence.

3. METHOD COMPARISON

Figure 4 shows a portion of the cloud image from the SCAR-B data set. It is from flight 95–163. Panel a shows the
clouds in the image using a near infrared band (similar to MTI band “E”) from the MAS data. Panel b shows the
clouds determined using a simple–threshold scheme. Panel c shows the MODIS cloud mask for this image. Panel d
shows the GENIE results for this data. Here it is important to note that GENIE discovered some false positive pixels
in the MODIS cloud mask. The GENIE cloud mask and the cloud mask determined from simple thresholds are quite
similar. This leads to greater confidence in the simple–threshold applicability to this particular data set. Note also
that the false positives in the lower left edge of the image in the cloud mask from MODIS are not replicated with the
simple–threshold routine. Caution is necessary, however, as the similarities and differences between the cloud masks
should not be generalized to snowy or night scenes.

Each cloud detection method mentioned above has positives and negatives associated with it. Here several of
these aspects are described.
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Figure 3. Two contributing feature planes evolved for a cloud mask on SCAR-B data. See Section 2.3 for details.
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The simple–threshold method requires a user to interface and determine the thresholds for each image, this
process takes on the order of minutes. The computation time for this method is then minimal, on the order of a
second or two. The mask is sufficiently accurate, with the possible exception of images that contain both snow and
clouds.

The MODIS cloud mask uses a variety of physics–based tests for various types of clouds. This requires a great deal
of ancillary data instead of user determined thresholds. It does better over snow and ice than the simple–threshold
method because the ancillary data estimates the likelihood of snow and ice. It is computationally intensive, taking
minutes to run, and a great deal of memory.

GENIE requires a user to provide training data. The evolution process takes a few hours, but after it has evolved
a solution, it takes seconds to run on any particular image. It is not as memory intensive as the MODIS cloud mask.
Finally, unlike either of the other methods, it has a quantifiable error rate (on the training data). This instills more
confidence (assuming the error rate is low) on the user end, though in principle generalization of the algorithm needs
to be shown on a case–by–case basis. In practice, we find that the evolved algorithm does tend to generalize well.

The algorithm evolved by GENIE for this particular cloud mask application uses a thermal infrared band and a
red band. This is similar to the method used with the simple–thresholds, though the band choices are not identical.

4. SUMMARY

We have created a cloud mask using simple, user–defined thresholds. This mask compares quite favorably to the
MODIS cloud mask. While it does require user intervention, it does not require large amounts of processing time
or disk space. We have also compared our results to an evolved solution for masking clouds created with a genetic
algorithm. Again, the simple method compares favorably to the genetic algorithm derived mask.

All three methods have strong points and drawbacks. We plan to continue the comparison between the GENIE
cloud masks and the MODIS cloud mask more quantitatively in future work. Also, we plan to use both GENIE and
the MTI cloud mask on a regular basis in detection products for the MTI spacecraft. For the time being, though,
our level 2 masking algorithm will remain the simple–thresholding procedure.
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c. d.

a.

Figure 4. The original data is compared with the three cloud masking algorithm results. (a) Shows the actual
scene, a portion of flight 95-163 shown in a near infrared band. (b) The MTI cloud masking algorithm results. (c)
The MODIS cloud mask results. (d) The GENIE cloud mask results.
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